°Ù¼ÒÀÖ²Ê
|
ÎÞÒíÄñÒ»¿âа¶ñÂþ»
|
Ц¾ÆÂ¥Ð°¶ñÂþ»
|
¿ªÐÄÆåÅÆ
|
ÓéÀÖÆåÅÆ
|
а¶ñÂþ»Ö®²»Öª»ðÎè
|
ÆåÅÆÊÒ¹ÜÀíÖÆ¶È
|
°Ù¼ÒÀÖÍøÖ·
|
а¶ñÂþ»È«¼¯ÏÂÔØ
|
а¶ñÂþ»Ö®µç³µ³Õºº
|
а¶ñÂþ»ÖÐÎÄÍø
|
ÈÕ±¾Ð°¶ñÂþ»¶¯Ì¬Í¼
|
а¶ñÂþ»²»Öª»ðÎè
|
³¬Ð°¶ñÂþ»É«ÏµÍ¼Æ¬
|
²»Öª»ðÎèа¶ñÂþ»
|
а¶ñÂþ»²»Öª»ðÎèÂÖ
|
´ºÀöhа¶ñÂþ»¼¯
|
а¶ñÂþ»É«Ïµ
|
ÔÚÏß°Ù¼ÒÀÖ
|
½ðÅ£ÆåÅÆ
|
ÎÞÒíÄñа¶ñÂþ»ÍøÕ¾
|
ÎÞÒíÄñа¶ñÂþ»¼¯
|
ÉÏÓÎÆåÅÆ´óÌüÏÂÔØ
|
ÉÙŮа¶ñÂþ»È«¼¯½û
|
¶þ´ÎԪа¶ñÂþ»9699
|
ÉÙŮа¶ñÂþ»´óÈ«
|
ÓŲ¥Í¼¿âа¶ñÂþ»
|
È«Ñ¶Íø
|
È«Ñ¶ÍøÐÂ2
|
0008È«Ñ¶Íø
|
È«Ñ¶ÍøÎåºþËĺ£
|
ÎåºþËĺ£È«Ñ¶Íø
|
ÐÂÈ«Ñ¶Íø
Mathematics - Upper Secondary - yTeach Publisher - Student activity - Learning object - Self-study resource - Proving trigonometric identities
Minu asjad
Start & Search
yTeach help
About Us
Login
Homepage
»
Resources
»
Proving trigonometric identities
Proving trigonometric identities
1
2
3
4
5
( Users Rating: 0.00, Votes: 0, Your vote: 0.00 )
Subject
Mathematics
Grade
Upper Secondary
Publisher
yTeach Publisher
Resource types
Student activity
Teaching type
Learning object
Usage
Self-study resource
You need to buy a licence to access this resource.
Partner resource
Identity or not?
[Animation]
Proving trigonometric identities
[Whiteboard exercise]
Is also part of...
Basic trigonometric functions
[Class activity]
Relevant to...
cid_basic
Upper Secondary
Mathematics
XI. Trigonometry (1)
52. Basic trigonometric functions
Copyright
YDP SA
Keywords
proving
,
trigonometric
,
identity
,
Pythagorean identity
,
trigonometric identity
,
identities
,
identity of trigonometric function
,
proving trigonometric identity
,
Proving trigonometric identities
Do you want to...?
Start
Bookmark
In order to unlock resources, you must be logged on yTeach and assigned to school.
Click
HERE
to Log in.
You cannot unlock this resource resources because you do not have enough Credits.
Click
HERE
to buy more credits.
This resource is not currently available for purchase - please check back later.
About Us
Copyright © 2009 Young Digital Planet
Powered by
UNIVERSAL
Curriculum
&
yTeachSys
È«Ñ¶Íø
|
È«Ñ¶ÍøÐÂ2
|
0008È«Ñ¶Íø
|
È«Ñ¶ÍøÎåºþËĺ£
|
ÎåºþËĺ£È«Ñ¶Íø
|
ÐÂÈ«Ñ¶Íø